Tag: GÉANT

  • Hoe draagt SURF bij aan de herdefiniëring van de seconde?

    Hoe draagt SURF bij aan de herdefiniëring van de seconde?

    De weg naar een Europees Time & Frequency netwerk.

    Intro

    GÉANT organiseerde afgelopen maand bij het Joint Science Centre (een onderzoeks- en adviesorgaan van de Europese Commissie) een fysieke editie van de Special Interest Group Time & Frequency Network. Tijdens dit evenement in Italië, kwamen NREN’s en NMI’s samen om de contouren van een Europees Time & Frequency-netwerk verder uit te werken. In deze blog leg ik uit wat dit netwerk gaat bereiken en wat de rol van SURF is.

    Van nationaal naar internationaal

    Veel nationale NREN’s (National Research & Education Networks) hebben in de afgelopen jaren, samen met NMI’s (National Metrology Institutes), Time & Frequency-netwerken aangelegd. Deze netwerken distribueren tijd- en frequentiesignalen via glasvezel naar onderzoekers en soms commerciële partijen. Verschillende vormen van wetenschappelijk onderzoek profiteren van verbeterde synchronisatie en kalibratie van meetapparatuur, wat leidt tot verfijndere resultaten.

    Wil je weten hoe we dit doen en hoe het werkt? Lees dan meer over SURF Time & Frequency hier. Of luister naar de podcast die ik hierover maakte met SURF.

    Wat nog ontbrak, was grensoverschrijdende connectiviteit tussen deze nationale netwerken. GÉANT werkt nu samen met NREN’s en NMI’s aan een netwerk dat de individuele landen met elkaar verbindt.

    Een gouden samenwerking: NREN’s & NMI’s

    De afgelopen jaren hebben NREN’s en NMI’s elkaar steeds beter gevonden en zijn ze nauwer gaan samenwerken. NMI’s leveren de klokken en de bron voor het Time & Frequency-signaal, terwijl NREN’s het netwerk en de expertise hebben om deze signalen te distribueren.

    Interessant genoeg hebben de makers van deze klokken, die doorgaans de bron vormen van de huidige Time & Frequency-netwerken, het netwerk nu zelf nodig voor de doorontwikkeling van de zogeheten optische klokken.

    Optische klokken

    Optische klokken zijn de volgende generatie klokken die de tijd nog nauwkeuriger kunnen meten dan de huidige cesium-atoomklokken. Door gebruik te maken van lasers in plaats van microgolven (hogere frequentie betekent hogere precisie), kunnen deze klokken tot honderden keren nauwkeuriger meten dan de huidige generatie. In 2030 moet deze technologie leiden tot een herdefinitie van de seconde.

    Maar hoe weet je of een optische klok correct werkt? Meten is vergelijken. Als je bijvoorbeeld de lengte van een bacterie wilt bepalen, gebruik je geen rolmaat van de bouwmarkt—je hebt een nauwkeuriger meetinstrument nodig. Op dezelfde manier kan een optische klok, die pas na 15 miljard jaar één seconde verkeerd loopt, alleen worden getest door vergelijking met een andere optische klok.

    Zo’n klok verplaats je echter niet zomaar in een koffer per trein van Amsterdam naar Braunschweig (waar een andere optische klok wordt ontwikkeld). Zie foto hieronder. Dit vereist een andere aanpak.

    Foto van een onderdeel van de Amsterdamse Optische Klok (in wording). Meer info over de Amsterdamse klok: iqclock.eu

    Foto van een onderdeel van de Amsterdamse Optische Klok (in wording). Meer info over de Amsterdamse klok: iqclock.eu

    Kloksignalen vergelijken via het netwerk

    Wat wél mogelijk is, is het transporteren van het frequentiesignaal van een optische klok via een netwerk. Op die manier kunnen klokken op verschillende locaties met elkaar worden vergeleken. En niet slechts twee klokken je hebt meerdere klokken nodig om te bepalen welke van hen eventueel een afwijking vertoont.

    De technologie voor het transporteren van deze frequentiesignalen is inmiddels zo geavanceerd dat het signaalverlies kleiner is dan de onnauwkeurigheid van de klokken zelf. Dit is precies wat de eerste fase van het Core Time/Frequency Network (C-TFN) mogelijk maakt. Via dit netwerk kunnen in Amsterdam Science Park Nederlandse klokken vergeleken worden met klokken uit Duitsland en Frankrijk. Amsterdam Science Park krijgt daarmee een centrale rol in dit nieuwe netwerk, wat een unieke situatie oplevert: een locatie waar signalen van de beste NMI’s ter wereld samenkomen en vergeleken worden.

    Nationaal Ultra Stable Optical Frequency Network

    Niet alleen onderzoekers op het gebied van tijdsmeting profiteren van deze signalen. Verschillende SURF-leden, zoals ESA, VU en TU/e  hebben al aangegeven dat zij toegang willen krijgen tot deze uiterst precieze frequentiesignalen.

    De techniek die dit mogelijk maakt, Ultra Stable Optical Frequency (een soort ‘White Rabbit on steroids’), is nog eens een factor 1000 nauwkeuriger dan White Rabbit, met een precisie in de pico- en femtoseconden. Dit heeft toepassingen in onder andere quantumcomputing. Daarom installeren we nu al filters in het nationale netwerk om deze signalen te kunnen distribueren. Zo blijft SURF vooroplopen in het ondersteunen van onderzoekers in Nederland.

  • SC24: Gedistribueerd hybride kwantumrekenen met SURF en NetherLight

    SC24: Gedistribueerd hybride kwantumrekenen met SURF en NetherLight

    Tijdens SuperComputing 2024 (SC24) in Atlanta toonde een internationale samenwerking een baanbrekende demonstratie van gedistribueerde hybride kwantumcomputing beveiligd door geavanceerde post-kwantum cryptografie (PQC) en kwantum sleuteldistributie (QKD). Deze wereldwijde inspanning bracht partners uit Europa en de VS samen en liet zien hoe kwantum- en klassieke computersystemen kunnen worden geïntegreerd en beveiligd op wereldschaal.

    De uitdaging en kans van kwantumcomputing

    Quantum computing heeft een enorm potentieel voor het oplossen van complexe problemen op gebieden als chemie, biologie, meteorologie en financiële systemen – uitdagingen die buiten het bereik liggen van klassieke computing. De kosten, gevoeligheid en beperkte beschikbaarheid van de technologie vormen echter obstakels voor een wijdverspreide toepassing. Bovendien vormt quantum computing een bedreiging voor de veiligheid van de huidige encryptiesystemen, wat de inzet voor robuuste, toekomstbestendige oplossingen verhoogt.

    Om deze uitdagingen aan te gaan, was de demonstratie erop gericht om:

    1. Combineer kwantumcomputing met klassieke middelen om de toegankelijkheid en kosteneffectiviteit te verbeteren.

    2. Wereldwijde distributie van deze hybride systemen mogelijk maken voor bredere toegang voor onderzoekers.

    3. Deze systemen en gegevens beschermen tegen bedreigingen in een post-kwantum cryptografische omgeving.

    Internationale samenwerking stimuleert innovatie

    Deze demonstratie was het resultaat van een internationaal samenwerkingsverband tussen Europese organisaties (PSNC, GÉANT, SURF/NetherLight) en Amerikaanse instellingen (Internet2, ESnet, ICAIR/Northwestern University, StarLight). Samen bouwden ze een trans-Atlantisch hybride kwantum-klassiek computernetwerk dat testbeds in Poznan, Polen, en Atlanta, VS, verbindt met behulp van live productie netwerkinfrastructuur.

    SURF en de NetherLight uitwisseling speelden een centrale rol door wereldwijde connectiviteit mogelijk te maken naast andere grote netwerken zoals GÉANT, Internet2 en SCinet. Deze gezamenlijke aanpak maakte gebruik van de expertise en middelen van alle partners om de grenzen te verleggen van wat mogelijk is bij de integratie van kwantum- en klassieke computers.

    Technische doorbraken en veilige gegevensoverdracht

    De demonstratie liet zien:

    – Hybride kwantum-klassieke computerintegratie met Quantum Processing Units (QPU’s), CPU’s en GPU’s.

    – Gegevenstransmissie op hoge snelheid over trans-Atlantische verbindingen beveiligd met PQC algoritmen en QKD encryptie.

    – Geavanceerde beveiligingsmaatregelen, waaronder DWDM-diensten voor versleuteling over lange afstanden en QKD-technologie voor beveiliging van lokale netwerkgegevens.

    Deze opstelling demonstreerde de levensvatbaarheid van een gedistribueerde kwantum-klassieke infrastructuur die gebruikscases voor onderzoek op gebieden als materiaalwetenschap en optimalisatie kan ondersteunen. Door gebruik te maken van bestaande kwantumcomputersystemen met ~100 qubit capaciteit, bevordert het project het doel om “kwantumbruikbaarheid” te bereiken.

    Een model voor toekomstige innovatie

    De SC24 demonstratie onderstreept de kracht van internationale samenwerking om complexe uitdagingen op te lossen en technologische doorbraken te stimuleren. Door het integreren van geavanceerde technologieën en middelen van verschillende wereldwijde partners, effent dit project de weg voor de volgende generatie van veilige, gedistribueerde kwantumcomputerinfrastructuur.

    De deelname van SURF en NetherLight illustreert hun toewijding aan het bevorderen van wetenschap en innovatie door middel van wereldwijde partnerschappen. Samen met andere partners laten ze zien hoe collectieve inspanningen het potentieel van quantum computing voor onderzoek en onderwijs wereldwijd kunnen ontsluiten.

    Het project was te zien op SC24’s Network Research Exhibition, met een live presentatie in het NRE Theatre, waar het transformatieve potentieel van gedistribueerde hybride kwantumcomputers werd getoond.

    Meer informatie en het volledige persbericht vind je hier.