Tag: SuperComputing

  • International Collaboration at SuperComputing24: NetherLight/SURF participates in NICT-led experiment to advance high-speed data innovations

    International Collaboration at SuperComputing24: NetherLight/SURF participates in NICT-led experiment to advance high-speed data innovations

    During the SuperComputing 2024 (SC24) event in Atlanta, the Japanese National Institute of Information and Communications Technology (NICT) led an ambitious experiment using a global-scale experimental network. This network, established through collaboration with 19 international partners, connected Tokyo and Atlanta with 10 high-speed 100 Gbps paths, achieving a total capacity of 800 Gbps. The project showcased groundbreaking demonstrations of high-speed data transfer, anonymous communication, and innovative data management.

    One notable highlight was a data transfer experiment that reached 466 Gbps, and an award-winning anonymous communication demonstration by Osaka University achieved 588 Gbps while ensuring robust privacy. 

    NetherLight, the Global Exchange Point (GXP) run by SURF, played a critical role facilitating these complex experiments. Other key contributors included research and education networks and GXP’s from around the world, showcasing the collective effort required to achieve such innovation.

    This NICT experiment at SC24 emphasizes the importance of international collaboration and partnerships in global research and education networks. By working together in experiments like these, we can collectively show and assess the potential for transformative technologies in data handling and communication, essential for future scientific progress.

    For more details, pictures and graphics, and information about the contributing parties in this experiment, please read the full NICT press release here.

  • SC24: Advancing Distributed Hybrid Quantum Computing with SURF and NetherLight

    SC24: Advancing Distributed Hybrid Quantum Computing with SURF and NetherLight

    At SuperComputing 2024 (SC24) in Atlanta, an international collaboration showcased a groundbreaking demonstration of distributed hybrid quantum computing secured by advanced post-quantum cryptography (PQC) and quantum key distribution (QKD). This global effort brought together partners from Europe and the USA, highlighting how quantum and classical computing systems can be integrated and secured on a world scale.

    The Challenge and Opportunity of Quantum Computing

    Quantum computing holds immense potential for solving complex problems in fields like chemistry, biology, meteorology, and financial systems—challenges beyond the reach of classical computing. However, the technology’s cost, sensitivity, and limited availability present hurdles to its widespread application. Moreover, quantum computing threatens the security of current encryption systems, raising the stakes for robust, future-proof solutions.

    To address these challenges, the demonstration aimed to:

    1. Combine quantum computing with classical resources to improve accessibility and cost-effectiveness.

    2. Enable global distribution of these hybrid systems for broader researcher access.

    3. Protect these systems and data against threats in a post-quantum cryptographic environment.

    International Collaboration Driving Innovation

    This demonstration was the result of an international partnership involving European organizations (PSNC, GÉANT, SURF/NetherLight) and U.S. institutions (Internet2, ESnet, ICAIR/Northwestern University, StarLight). Together, they built a transatlantic hybrid quantum-classical computing network connecting testbeds in Poznan, Poland, and Atlanta, USA, using live production networking infrastructure.

    SURF and its NetherLight exchange played a pivotal role, enabling global connectivity alongside other major networks like GÉANT, Internet2, and SCinet. This collaborative approach leveraged expertise and resources from all partners to push the boundaries of what’s possible in quantum and classical computing integration.

    Technical Breakthroughs and Secure Data Transmission

    The demonstration showcased:

    – Hybrid quantum-classical computing integration using Quantum Processing Units (QPUs), CPUs, and GPUs.

    – High-speed data transmission over transatlantic links secured with PQC algorithms and QKD encryption.

    – Advanced security measures, including DWDM services for long-distance encryption and QKD technology for local network data security.

    This setup demonstrated the viability of a distributed quantum-classical infrastructure capable of supporting research use cases in fields like material science and optimization. By employing existing quantum computing systems with ~100 qubit capacity, the project advances the goal of achieving “quantum utility.”

    A Model for Future Innovation

    The SC24 demonstration underscores the power of international collaboration to solve complex challenges and drive technological breakthroughs. By integrating cutting-edge technologies and resources from diverse global partners, this project paves the way for the next generation of secure, distributed quantum computing infrastructure.

    SURF and NetherLight’s participation exemplifies their commitment to advancing science and innovation through global partnerships. Together with other partners, they are demonstrating how collective efforts can unlock the potential of quantum computing for research and education worldwide.

    The project was featured at SC24’s Network Research Exhibition, with a live presentation at the NRE Theatre, showcasing the transformative potential of distributed hybrid quantum computing.

    For further information and the full press release, please continue here.